1m3=1000L(litres)1kgm/s2=1N(Newton)1N/m2=1Pa(Pascal)1kN/m2=1kPa(kilopascal)1N/mm2=1MPa(megapascal)Pressure:P=FA(=forcearea)Density:ρ (rho)=mV(=massvolume)Specific Weight:γ (gamma)=wV(=weightvolume)γ=ρgSpecific Gravity:sg=ρsρw@4° ⁣C(=density of substancedensity of water at 4° ⁣C)=γsγw@4° ⁣C(=spec.wt of substancespec.wt of water at 4° ⁣C)pabs=patm+pgaugeΔp=γh \begin{aligned} 1\,\mathsf{m^3} &= 1000\,\text{L} \quad (\textsf{litres}) \\ 1\,\mathsf{kg\cdot m/s^2} &= 1\,\text{N} \quad (\textsf{Newton}) \\ 1\,\mathsf{N/m^2} &= 1\,\text{Pa} \quad (\textsf{Pascal}) \\ 1\,\mathsf{kN/m^2} &= 1\,\text{kPa} \quad (\textsf{kilopascal}) \\ 1\,\mathsf{N/mm^2} &= 1\,\text{MPa} \quad (\textsf{megapascal}) \\ \textsf{Pressure:} \quad P &= \frac{F}{A} \quad \left(= \frac{\textsf{force}}{\textsf{area}}\right) \\ \textsf{Density:} \quad \rho \textsf{ (rho)} &= \frac{m}{V} \quad \left(= \frac{\textsf{mass}}{\textsf{volume}}\right) \\ \textsf{Specific Weight:} \quad \gamma \textsf{ (gamma)} &= \frac{w}{V} \quad \left(= \frac{\textsf{weight}}{\textsf{volume}}\right) \\ \gamma &= \rho{}g \\ \textsf{Specific Gravity:} \quad \textsf{sg} &= \frac{\rho_s}{\rho_{w@4\degree\! C}} \quad \small\left(= \frac{\textsf{density of substance}}{\textsf{density of water at } 4\degree\! C}\right) \\ &= \frac{\gamma_s}{\gamma_{w@4\degree\! C}} \quad \small\left(= \frac{\textsf{spec.wt of substance}}{\textsf{spec.wt of water at } 4\degree\! C}\right) \\ p_{abs} &= p_{atm} + p_{gauge} \\ \Delta p &= \gamma h \end{aligned}

 

Pascal's Laws:

  1. Pressure acts uniformly in all directions on a small volume of liquid.
  2. Pressure acts perpendicular to the solid boundaries that contain a fluid.